|
Phase-contrast imaging is a method of imaging that has a range of different applications. It exploits differences in the refractive index of different materials to differentiate between structures under analysis. In conventional light microscopy, phase contrast can be employed to distinguish between structures of similar transparency, and to examine crystals on the basis of their double refraction. This has uses in biological, medical and geological science. In X-ray tomography, the same physical principles can be used to increase image contrast by highlighting small details of differing refractive index within structures that are otherwise uniform. In transmission electron microscopy (TEM), phase contrast enables very high resolution (HR) imaging, making it possible to distinguish features a few Angstrom apart (at this point highest resolution is 3-4 A). ==Light microscopy== ''See also: Phase contrast microscopy and Quantitative phase contrast microscopy'' Phase contrast takes advantage of the fact that different structures have different refractive indices, and so bend light and delay its passage through the sample by different amounts. The retardation of the light results in some waves being 'out of phase' with others, and so to the human eye a microscope in phase contrast mode effectively darkens or brightens particular areas to reflect this change. Phase contrast is used extensively in optical microscopy, in both biological and geological sciences. In biology, it is employed in viewing unstained biological samples with the human eye, making it possible to distinguish between structures that are of very similar transparency. In geology, phase contrast is exploited in a different way to highlight differences between mineral crystals cut to a standardised thin section (usually 30 µm) and mounted under a light microscope. Crystalline materials are capable of exhibiting double refraction, in which light rays entering a crystal are split into two beams that may exhibit different refractive indices, depending on the angle at which they enter the crystal. The phase contrast between the two rays can be detected with the human eye using particular optical filters. As the exact nature of the double refraction varies for different crystal structures, phase contrast aids in the identification of minerals. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Phase-contrast imaging」の詳細全文を読む スポンサード リンク
|